Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 153(9): 2571-2584, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394117

RESUMO

BACKGROUND: The consumption of poor-quality protein increases the risk of essential amino acid (EAA) deficiency, particularly for lysine and threonine. Thus, it is necessary to be able to detect easily EAA deficiency. OBJECTIVES: The purpose of this study was to develop metabolomic approaches to identify specific biomarkers for an EAA deficiency, such as lysine and threonine. METHODS: Three experiments were performed on growing rats. In experiment 1, rats were fed for 3 weeks with lysine (L30), or threonine (T53)-deficient gluten diets, or nondeficient gluten diet (LT100) in comparison with the control diet (milk protein, PLT). In experiments 2a and 2b, rats were fed at different concentrations of lysine (L) or threonine (T) deficiency: L/T15, L/T25, L/T40, L/T60, L/T75, P20, L/T100 and L/T170. Twenty-four-hour urine and blood samples from portal vein and vena cava were analyzed using LC-MS. Data from experiment 1 were analyzed by untargeted metabolomic and Independent Component - Discriminant Analysis (ICDA) and data from experiments 2a and 2b by targeted metabolomic and a quantitative Partial Least- Squares (PLS) regression model. Each metabolite identified as significant by PLS or ICDA was then tested by 1-way ANOVA to evaluate the diet effect. A two-phase linear regression analysis was used to determine lysine and threonine requirements. RESULTS: ICDA and PLS found molecules that discriminated between the different diets. A common metabolite, the pipecolate, was identified in experiments 1 and 2a, confirming that it could be specific to lysine deficiency. Another metabolite, taurine, was found in experiments 1 and 2b, so probably specific to threonine deficiency. Pipecolate or taurine breakpoints obtained give a value closed to the values obtained by growth indicators. CONCLUSIONS: Our results showed that the EAA deficiencies influenced the metabolome. Specific urinary biomarkers identified could be easily applied to detect EAA deficiency and to determine which AA is deficient.


Assuntos
Lisina , Desnutrição , Ratos , Animais , Treonina , Taurina , Dieta , Glutens
2.
Nutrients ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615854

RESUMO

The objective of this study is to evaluate the effects of a strictly essential amino acid (lysine or threonine; EAA) deficiency on energy metabolism in growing rats. Rats were fed for three weeks severely (15% and 25% of recommendation), moderately (40% and 60%), and adequate (75% and 100%) lysine or threonine-deficient diets. Food intake and body weight were measured daily and indirect calorimetry was performed the week three. At the end of the experimentation, body composition, gene expression, and biochemical analysis were performed. Lysine and threonine deficiency induced a lower body weight gain and an increase in relative food intake. Lysine or threonine deficiency induced liver FGF21 synthesis and plasma release. However, no changes in energy expenditure were observed for lysine deficiency, unlike threonine deficiency, which leads to a decrease in total and resting energy expenditure. Interestingly, threonine severe deficiency, but not lysine deficiency, increase orexigenic and decreases anorexigenic hypothalamic neuropeptides expression, which could explain the higher food intake. Our results show that the deficiency in one EAA, induces a decrease in body weight gain, despite an increased relative food intake, without any increase in energy expenditure despite an induction of FGF21.


Assuntos
Lisina , Treonina , Ratos , Animais , Peso Corporal , Aumento de Peso , Metabolismo Energético , Ingestão de Alimentos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...